Environmental Engineering – Module 3: Air Quality and Air Pollution

1. Composition and Properties of Air

• Composition of Dry Air (by volume):

o Nitrogen (N₂): 78.09%

Oxygen (O₂): 20.95%

Argon (Ar): 0.93%

Carbon dioxide (CO₂): 0.03%

• Trace gases: Neon, Helium, Methane, Krypton, Hydrogen, Ozone, etc.

• Properties:

- Air density, viscosity, temperature and humidity affect dispersion of pollutants.
- Atmospheric pressure and temperature vary with altitude.
- Air acts as a medium for combustion and supports life.

2. Quantification of Air Pollutants

Common Air Pollutants:

- Particulate Matter (PM₁₀ and PM_{2.5})
- Sulfur dioxide (SO₂)
- Nitrogen oxides (NOx)
- Carbon monoxide (CO)
- o Ozone (O₃)
- Volatile organic compounds (VOCs)
- Lead (Pb) and other heavy metals

Units of measurement:

- \circ Concentrations typically expressed in micrograms per cubic meter ($\mu g/m^3$) or parts per million (ppm).
- Emission rate: mass per unit time (e.g., kg/hr).

• Pollutant Quantification Methods:

- Emission inventories based on fuel consumption and industrial processes.
- Calculation based on source characteristics using emission factors.

3. Monitoring of Air Pollutants

• **Purpose:** To assess pollution levels, sources, and compliance with air quality standards.

• Types of Monitoring:

- Ambient Air Monitoring: Measures pollutants in outdoor air.
- Stack Monitoring: Measures emissions from point sources like chimneys.

• Common Monitoring Techniques:

- **Gravimetric analysis** for particulate matter.
- **Gas analyzers** using chemical or instrumental methods for gaseous pollutants (e.g., SO₂ by West-Gaeke or Pararosaniline method, NOx by Chemiluminescence analyzer).
- Continuous Ambient Air Quality Monitoring Stations (CAAQMS) equipped with real-time analyzers.
- Remote sensing and air quality sensors.

4. Air Pollution – Occupational Hazards

- Workers in industries such as mining, construction, chemical manufacturing, and metal refining face risks due to exposure to dust, toxic gases, and vapors.
- Common hazards:
 - Respiratory diseases (silicosis, asbestosis, pneumoconiosis)
 - Chemical poisoning (lead, mercury, benzene)
 - Noise and heat stress
- Prevention includes proper ventilation, personal protective equipment (PPE), and workplace exposure limits.

5. Urban Air Pollution and Automobile Pollution

• Urban Air Pollution Sources:

- Vehicular emissions (major source in cities).
- o Industrial emissions.
- Construction dust.
- Domestic fuel combustion.

• Automobile Pollution:

- Emission of CO, NOx, hydrocarbons (HC), particulate matter.
- Types of engines:
 - Spark Ignition (SI) engines (gasoline)
 - Compression Ignition (CI) engines (diesel)
- Emission depends on combustion efficiency, fuel quality, engine type, and operating conditions.

6. Chemistry of Combustion

- Complete combustion: Hydrocarbon fuels react with oxygen to produce CO2 and H2O. $C_xH_y+O_2 o CO_2+H_2O+Energy$
- Incomplete combustion: Produces CO, unburned hydrocarbons, soot, and other pollutants.
- Poor combustion leads to higher emissions and loss of energy.

7. Automobile Engines, Fuel Quality, Operating Conditions, and Interrelationships

• Engines:

- SI engines operate with spark ignition, lean fuel-air ratio to reduce emissions.
- CI engines operate with compression ignition, tend to emit more particulates and NOx.

Fuel Quality:

- Octane number for petrol.
- Cetane number for diesel.
- Presence of sulfur affects SO₂ emissions and catalyst poisoning.

Operating Conditions:

- Engine load, speed, maintenance, and temperature affect emission levels.
- Cold starts and idling increase pollutant emissions.
- o Fuel injection methods also influence combustion efficiency.

• Interrelationship:

- Fuel type and quality affect combustion chemistry and emission composition.
- o Operating parameters influence fuel consumption and pollutant formation.

8. Air Quality Standards

- Established by national and international agencies (e.g., Central Pollution Control Board (CPCB), WHO).
- Specify maximum allowable concentrations for pollutants to protect human health and the environment.
- Examples of Indian Ambient Air Quality Standards (Annual/24-hour values):

Pollutant	Standard (μg/m³)
PM10	100 (24-hr), 60 (annual)
PM2.5	60 (24-hr), 40 (annual)
SO ₂	80 (24-hr), 50 (annual)
NO ₂	80 (24-hr), 40 (annual)
СО	4 mg/m³ (8 hr)
Оз	100 (8 hr)

9. Control Measures for Air Pollution

• Source Control:

- Use of cleaner fuels.
- Improved combustion techniques.
- Industrial process modification.

• Emission Control Devices:

- Electrostatic precipitators (ESP) for particulates.
- Cyclone separators.
- o Scrubbers (wet and dry) for SO₂ removal.
- o Fabric filters (baghouses).
- Catalytic converters in vehicles.

• Urban Planning:

- Zoning to separate industrial areas.
- Promotion of public transport.
- Green belts and urban forestry.

• Limitations:

- High capital and operational costs.
- Effectiveness depends on maintenance.
- Some technologies generate secondary wastes.

If you'd like, I can provide detailed explanations, formulas, design methods, or case studies related to any of these topics. Let me know!